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Three types of homogeneous anisotropic turbulence were produced by the plane
distortion, axisymmetric expansion and axisymmetric contraction of grid-generated
turbulence, and their behaviour in returning to isotropy was experimentally studied
using hot-wire anemometry. It was found that the turbulence trajectory after the
plane distortion was highly nonlinear, and did not follow Rotta’s linear model in
returning to isotropy. The turbulence wanted to become axisymmetric even more
than it wanted to return to isotropy. In order to show the rate of return to isotropy
of homogeneous turbulence, a map of the ratio of the characteristic time scale for the
decay of turbulent kinetic energy to that of the return to isotropy was constructed.
This demonstrated that the rate of return to isotropy was much lower for turbulence
with a greater third invariant of the anisotropy tensor. The invariant technique was
then applied to the experimental results to develop a new turbulence model for the
return-to-isotropy term in the Reynolds stress equation which satisfied the realizability
conditions. The effect of the Reynolds number on the rate of return to isotropy was
also investigated and the results incorporated in the proposed model.

1. Introduction
There has been significant development in the field of the second-order modelling

of turbulence in the last three decades (Launder, Reece & Rodi 1975; Reynolds 1976;
Lumley 1978; Bradshaw, Cebeci & Whitelaw 1981; Launder 1989; Speziale 1991;
Hanjalic 1994; Reynolds & Kassinos 1995). In the second-order modelling, a system
of statistically averaged equations is closed at the second moment so that all the
third-moment terms appearing in the transport equations for second-moment terms,
and one auxiliary equation which determines the length scale, must be modelled.
Second-order models certainly have an advantage over lower-order models for flows
where the transport of second-moment terms, such as the Reynolds stress and heat
flux, play important roles. This is because the physics of the transport of second-
moment terms can be built into the second-order models. The return-to-isotropy term,
which must be modelled in the second-order modelling of turbulence, is responsible
for the exchange of turbulent kinetic energy among its components through the
interaction of fluctuating velocities and pressure. It is, therefore, important to study
the return-to-isotropy term for a better understanding of turbulence, which should
lead to a development of better turbulence models.

In 1951, Rotta proposed a celebrated turbulence model for the return-to-isotropy
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term assuming a simple relationship between the rate of return to isotropy and the
degree of anisotropy of turbulence. It is a linear model in the sense that the rate
of return to isotropy is linearly proportional to the degree of anisotropy. Rotta’s
model has been used in most of the second-order turbulence models, and has been
proved to predict many shear flows quite well (Zeman 1975; Launder et al. 1975;
Reynolds 1976; Lumley & Newman 1977; Lumley 1978; Chung 1978). However,
this does not necessarily mean that the return-to-isotropy term has been modelled
well by Rotta’s model. One can always compensate a flaw, if any, in modelling
turbulence by adjusting model constants in the rest of the terms. In fact, there have
been claims from experimentalists that Rotta’s linear model does not account for
the correct energy redistribution among the components in homogeneous shear flows
(Champagne, Harris & Corrsin 1970; Hwang 1971; Harris, Graham & Corrsin 1977).
There have also been disagreements on the proportionality constant in Rotta’s model:
different values were used by different models depending on the turbulence structure
and the Reynolds number of a particular flow to be modelled (Rotta 1951; Hanjalic
& Launder 1972; Launder et al. 1975; Zeman 1975; Reynolds 1976).

Lumley & Newman (1977) and Lumley (1978) developed turbulence models for
the return to isotropy, which are functions of both the anisotropy of turbulence
and the Reynolds number. It seemed that the dispute on Rotta’s constant was
over after the introduction of these turbulence models. However, the experimental
investigation on the return to isotropy of homogeneous anisotropic turbulence by
Gence & Mathieu (1980) raised a new question about the rate of return to isotropy
when the third invariant of the anisotropy tensor of turbulence was positive. Here,
the third invariant of the anisotropy tensor is positive when one component of
turbulent kinetic energy is greater than the other two, and it becomes negative when
one component of turbulent kinetic energy is less than the other two. They argued,
using their experimental evidence, that the homogeneous turbulence with positive
third invariant returns to isotropy at much lower rate than that with negative third
invariant. As a result, the turbulence models for the return to isotropy proposed by
Lumley & Newman (1977) and Lumley (1978) became questionable: they calibrated
their models against only the experimental data for axisymmetric turbulence after a
contraction (Uberoi 1956, 1957; Mills & Corrsin 1959), in which case third invariant
of the anisotropy tensor was negative. Another problem in modelling the return-to-
isotropy term is that the intermediate component of turbulent kinetic energy is not
always predicted well using Rotta’s model, even if the proportionality constant in the
model is adjusted (Lumley 1982; Okibane 1979). It seems that these problems are
associated with the fundamental question of whether or not the process of the return
to isotropy of homogeneous turbulence is linear.

The return to isotropy of homogeneous turbulence following an axisymmetric con-
traction was first studied by Uberoi (1956, 1957), then by Mills & Corrsin (1959) and
Warhaft (1980). Comte-Bellot & Corrsin (1966) conducted an extensive experimental
study of it at several Reynolds numbers, where the streamwise turbulence intensity
was slightly greater than the other two components. Their results on the asymptotic
behaviour of turbulence with vanishing anisotropy were used by Lumley & New-
man (1977) and Lumley (1978) in the construction of turbulence models. Anisotropic
turbulence after the plane distortion was studied by Tucker (1970) and Gence &
Mathieu (1980). Although both tried to produce a similar type of turbulence, their
results were quite different. The third invariant of the anisotropy tensor was positive
in Gence & Mathieu (1980), while it was negative in Tucker (1979). There have been
further more recent experimental studies by Choi (1983), Choi & Lumley (1983), Le
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Penven, Gence & Comte-Bellot (1985) and Makita & Minami (1995), who tried to
characterize the behaviour of anisotropic turbulence with positive third invariants.
Direct numerical simulations (DNS) of homogeneous turbulence were also carried
out to study the return to isotropy of anisotropic turbulence (Rogallo 1981; Lee &
Reynolds 1985; Lee 1986; Yamamoto 1985; Ikai & Kawamura 1995), although most
of these are limited to very low Reynolds numbers.

There is definitely a lack of information on the return to isotropy of homoge-
neous turbulence. For example, it is not known how the homogeneous anisotropic
turbulence returns to isotropy without external forces. Does each component of tur-
bulent kinetic energy decay proportionally with each of the others as Rotta’s model
predicts? Does the rate of the return to isotropy depend on the type and degree of
anisotropy of turbulence or on the Reynolds number? To answer these questions,
three types of homogeneous anisotropic turbulence were created by the plane distor-
tion, axisymmetric expansion and axisymmetric contraction of grid turbulence, and
their behaviour in returning to isotropy was experimentally studied. The results were
used to develop a new turbulence model for the return-to-isotropy term. The effect of
the Reynolds number on the rate of return to isotropy was also investigated and the
results incorporated in the proposed model.

2. Theory
2.1. The Reynolds stress equation

The Reynolds stress equation for homogeneous flows without mean velocity gradients
is given (Lumley 1978) by

∂

∂t
uiuj =

p

ρ
(ui,j + uj,i)− 2ν ui,kuj,k (1)

By adding and subtracting 2
3
ε̄δij to the right-hand side of this equation, we obtain

∂

∂t
uiuj =

[
p

ρ
(ui,j + uj,i)− 2ν ui,kuj,k + 2

3
ε̄δij

]
− 2

3
ε̄δij , (2)

where ε̄ is the dissipation rate, given by

ε̄ = ν ui,jui,j . (3)

The quantity in the square bracket in equation (2) is a symmetric second-rank tensor
with zero trace, which is solely responsible for the return to isotropy of homogeneous
anisotropic turbulence through the interaction between fluctuating velocities and
pressure. If we set

ε̄φij = −
[
p

ρ
(ui,j + uj,i)− 2ν ui,kuj,k + 2

3
ε̄δij

]
(4)

the Reynolds stress equation becomes

∂

∂t
uiuj = −ε̄(φij + 2

3
δij), (5)

where φij is a non-dimensional, symmetric second-rank tensor with zero trace, which
we call the return-to-isotropy tensor. We will show later how the return-to-isotropy
tensor φij is modelled using the invariant technique (Lumley 1970, 1978).
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We introduce the non-dimensional time τ and the anisotropy tensor bij defined by

dτ =
ε̄

q2
dt, (6)

bij =
uiuj

q2
− δij

3
, q2 = uiui. (7)

Note that the anisotropy tensor vanishes identically when the turbulence becomes
isotropic. Equation (5) can be written in terms of the anisotropy tensor and non-
dimensional time as

d

dτ
bij = −(φij − 2bij). (8)

2.2. The invariant technique

Using the invariant technique (Lumley 1970, 1978), we can derive the most general
form of the return-to-isotropy tensor φij defined in (4). To do this, we assume that φij
is an isotropic, symmetric second-rank tensor function of a symmetric second-rank
tensor bij and the Reynolds number Rl . By an isotropic function, we mean that the
functional relationship is isotropic. In other words, any anisotropy of φij must result
entirely from the anisotropy of bij , although the values of φij may not be isotropic.
We, therefore, assume that there are no body forces acting on the turbulent flow,
nor are there solid boundaries within a few turbulent integral scales. The Reynolds
number is defined by

Rl =
(q2)2

9ε̄ν
, (9)

where the factor of 9 is included so that q2 = 3u2 and ε̄ = u3/l. In other words, the
Reynolds number Rl is based on the turbulence length scale l and the velocity scale
u of energy-containing eddies.

First, we form an invariant φijAiBj by choosing two arbitrary vectors Ai and Bj .
Then, the invariant φijAiBj must be a function of the invariants formed only by the
Reynolds number Rl (a scalar), vectors Ai and Bj and the tensor bij . Remembering
that the tensor bij is symmetric and the invariant φijAiBj is bilinear in Ai and Bj , the
only possible invariants that can be formed with Ai, Bj and bij are b0

ijAiBj , b
1
ijAiBj and

b2
ijAiBj . This comes from the Cayley–Hamilton theorem (Lumley 1970), where only

the 0, 1, and 2 powers of bij are linearly independent in three dimensions. Therefore,
invariant φijAiBj can be expressed by

φijAiBj = αb0
ijAiBj + βb1

ijAiBj + γb2
ijAiBj. (10)

Since Ai and Bj are arbitrary vectors, we can remove them from the above to obtain

φij = αb0
ij + βb1

ij + γb2
ij , (11)

where α, β, and γ are functions of the Reynolds number Rl and three independent
invariants I , II , and III of the anisotropy tensor, given by

I = 0, II = −bijbji/2, III = bijbjkbki/3. (12)

Note that the first invariant I is the trace of the anisotropy tensor bij , therefore it is
identically zero. We further use the fact that the tensor φij is also traceless, to obtain

α = 2
3
II γ. (13)



The return to isotropy of homogeneous turbulence 63

0.4

0.3

0.2

0.1

0
–0.10 –0.05 0 0.05 0.10

III

–II

Pancake-shaped
turbulence

2-D isotropic
turbulence Cigar-shaped

turbulence

2-D turbulence

1-D turbulence

Figure 1. The turbulence triangle and possible states of turbulence in invariant coordinates,
−II vs. III .

Substituting this relation back into equation (11) we obtain an invariant expression
for the return-to-isotropy tensor φij:

φij = βbij + γ(bikbkj + 2
3
II δij). (14)

This is the most general expression for the return-to-isotropy tensor φij that is
independent of flow geometry and coordinate axes, assuming that there are no
suppressed variables other than the Reynolds number Rl and three independent
invariants I , II , and III of the anisotropy tensor bij . Rotta’s model (Rotta 1951)
assumes that γ = 0 in equation (14) so it is given by

φij = βbij , (15)

where β is called Rotta’s constant. It will be demonstrated later, however, that
the nonlinear term is very important in explaining the nonlinear behaviour in the
returning to isotropy of homogeneous anisotropic turbulence.

2.3. Classification of turbulence

From equation (7) it can be seen that none of the eigenvalues of the anisotropy tensor
bij can be smaller than −1/3, corresponding to the vanishing of turbulent kinetic
energy in that component, nor greater than 2/3, corresponding to the vanishing of
other two components (Lumley 1978). This suggests that the range of invariants of the
anisotropy tensor is limited by these values. Indeed, it has been demonstrated that all
the possible states of turbulence must be found within the turbulence triangle (Lumley
& Newman 1977; Lumley 1978) in invariant coordinates as shown in figure 1. The
ordinate and the abscissa of this figure are the negative second invariant (−II ) and
the third invariant (III ) of the anisotropy tensor, respectively. The two-dimensional
(2-D) isotropic state of turbulence, where one component of turbulent kinetic energy
vanishes with the remaining two being equal, is at the left-hand corner of the triangle.
The one-dimensional (1-D) state of turbulence with only one turbulence component
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is at the right-hand corner of the triangle. The origin of the figure corresponds to
three-dimensional (3-D) isotropic turbulence. The turbulence along the straight line
connecting the 2-D isotropic turbulence and the 1-D turbulence is in the 2-D state. If
we define a function F by

F = 1 + 27 III + 9 II , (16)

then F vanishes whenever turbulence becomes two-dimensional, and it becomes unity
when turbulence enters a three-dimensional isotropic state. Turbulence on the left-
hand side of the triangle is axisymmetric, with one component of the turbulent kinetic
energy being smaller than the other two, called pancake-shaped turbulence. Turbu-
lence on the right-hand side of the triangle represents the other type of axisymmetric
turbulence, where one component of the turbulent kinetic energy is greater than the
other two. This is called cigar-shaped turbulence. In terms of the invariants, the
axisymmetric turbulence can be represented by

III = ±2(−II /3)3/2, (17)

where the positive sign is for cigar-shaped turbulence, and the negative sign is for
pancake-shaped turbulence.

The classification of turbulence used in the present study is based on the shape of
the energy ellipsoid (Lumley & Newman 1977; Lumley 1978). The energy ellipsoid
of homogeneous turbulence after an axisymmetric contraction has a pancake shape,
since one component of the turbulent kinetic energy is smaller than the other two. In
an axisymmetric contraction the turbulence eddies are stretched in the axial direction,
making them a rod-like shape (Lee & Reynolds 1985). On the other hand, the energy
ellipsoid of turbulence after an axisymmetric expansion has a cigar shape since one
component of turbulent kinetic energy is greater than the other two. In this case,
however, the turbulence eddies seem to have neither unique structure nor preferred
direction as the turbulence is compressed in the axial direction while stretched
in the other directions (Rogers & Moin 1987). It must be pointed out here that
Reynolds & Kassinos (1995) classify turbulence based on the shape of turbulence
eddies rather than the shape of energy ellipsoid as used here. In their system of
classification, therefore, the 2-D isotropic state of turbulence at the left-hand corner
of the turbulence triangle (see figure 1) is called two-component/two-dimensional
turbulence, while the 1-D state of turbulence at the right-hand corner is called
one-component/two-dimensional turbulence.

The first part of the present experiment was designed in such a way that the
homogeneous anisotropic turbulence would follow the ordinate of figure 1 toward
the origin, corresponding to the 3-D isotropic turbulence. The second part of the
experiment was planned to correspond to where the turbulence would return to
isotropy along the right-hand side of the triangle toward the origin. In the last part
of the experiment, pancake-shaped turbulence for different Reynolds numbers was
generated, and the behaviour of homogeneous turbulence in returning to isotropy
along the left-hand side of the turbulence triangle was investigated.

3. Experimental set-up and procedure
3.1. Experimental set-up

An open-return wind tunnel (Choi 1983) was used for the first two parts of the present
study, the plane distortion and the axisymmetric expansion experiments. First, air was
passed down to a blower through air filters. A flat layer of glass wool was placed at
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the intake of the blower, followed by a layer of bag filters. Dust, mist and oil particles
greater than 1 µm in diameter were removed from the intake air after passing through
these filters. The filtered air then went through a bell-mouth into a centrifugal blower,
whose outlet (0.21 m × 0.25 m in cross-section) was connected to a series of acoustic
mufflers through thick layers of rubber to prevent direct transmission of mechanical
vibration. The first muffler was of expansion-chamber type (Kinsler & Frey 1962)
with its chamber lined with 0.10 m thick acoustic foam. The second was a Helmholtz
resonator mounted as a side branch on top of a square duct. A 0.15 m long honeycomb
with a 9.5 mm hexagonal cell was fitted in the duct following the Helmholtz resonator
in order to straighten the incoming flow from the blower and to reduce the turbulence
level. The honeycomb section was followed by a preliminary diffuser, and then by a
main diffuser. There were two screens of 0.19 mm diameter wires with solidity σ = 0.35
in the 0.30 m long preliminary diffuser, whose cross-sectional area was increased form
0.21 m × 0.25 m to 0.30 m × 0.30 m. In the 0.61 m long main diffuser section, seven
screens were placed to prevent the flow separation. They were placed in such a way
that the pressure rise between the neighbouring screens could be cancelled by the
pressure drop at a screen that follows. The main diffuser was followed by a 0.58 m
long settling chamber of 1.22 m× 1.22 m cross-section, where eight fine-mesh screens
of 0.17 mm diameter wires (σ = 0.43) were equally spaced. A 0.89 m long smooth
contraction of the flow then took place following the settling chamber. The width
of the contraction section was reduced from 1.22 m to 1.02 m, while the height was
reduced from 1.22 m to 0.127 m, both two-dimensionally, resulting in a contraction
ratio of 11.5. After the contraction section, the flow passed through a turbulence-
generating grid made of 3.18 mm thick square brass tubes in a bi-plane structure.
The mesh length of the turbulence grid was 14.0 mm with solidity of 0.403. Following
a 0.28 m long straight-duct section after the grid, the turbulence was subjected to
an irrotational distortion in the distorting duct (Tucker 1970). The grid-generated
turbulence travelled for 45 mesh lengths in the distorting duct in order to relax
from the initial inhomogeneity and anisotropy while it was strained. At the end
of the distorting duct, the turbulence was suddenly relaxed from the irrotational
strain in a 2.45 m long test section. The cross-sectional dimension of the test section
was 0.254 m× 0.508 m for the plane distortion experiment, and 0.254 m× 0.254 m
for the axisymmetric expansion experiment. The top wall of each test section was
made of flexible Plexiglas, allowing the height along the section to be continuously
adjusted to maintain a constant mean velocity. The mean velocity was set at 21.0 m s−1

for the plane distortion experiment, and 11.5 m s−1 for the axisymmetric expansion
experiment. There were 22 test holes along the test section, 19 of which were at the
side and three at the bottom, through which hot-wire probes were inserted. All the
measurements were carried out along the centerline of the test section. A layer of
screen was placed at the end of the test section in order to avoid premature divergence
of the flow from the test section. The background turbulence level of the wind tunnel
in the test section was about 0.2%.

The wind tunnel used for the axisymmetric contraction experiment was of verti-
cally oriented, open-return type with a 9 : 1, three-dimensional contraction (Warhaft
1980). A turbulence-generating grid with solidity of 0.34 was placed after the main
contraction section, which was followed by the second contraction section. This
double-contraction configuration allowed us to generate pancake-shaped axisymmet-
ric turbulence with different initial Reynolds number and anisotropy. The second
contraction section leading to the 2.57 m long test section was a scaled-down ver-
sion of the main contraction, where the 0.20 m long section was reduced from
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0.406 m× 0.406 m to 0.203 m× 0.203 m. The turbulence level in the vertical wind tun-
nel was less than 0.2%. Further details of the wind tunnels together with the flow
parameters and turbulence characteristics are given in table 1.

3.2. Experimental procedure

The data acquisition system employed in the present experiment is the same as that
used by Warhaft (1980) and Sirivat (1983). Two channels of amplified AC signals
from an X-wire sensor were converted to digital signals by a 12-bit A/D converter at
±5 V full scale, and sent to the PDP 11/34 mini-computer. The computer sampled a
block of data, consisting of 1024 data points, into the buffer memory at a time and
paused between blocks to write them onto the hard disk. After one hundred blocks of
data equivalent to 102 400 data points were sampled, they were copied to a magnetic
tape. The tape was later replayed and analysed using the STAT program developed
by Kaminski and Warhaft (Kaminski 1978).

The first two parts of the present study, the plane distortion experiment and the
axisymmetric expansion experiment, were carried out using hot wires with a DISA
56C01/16 constant-temperature anemometer (CTA) system and DISA 56N20 signal
conditioners. Hewlett Packard 3466A digital multimeters were also used for reading
the mean output voltages from the CTA system. AC signals from the CTA were
amplified and filtered by signal conditioners at 10 Hz for high pass, and at 10 kHz for
low pass before being sent to the computer for sampling. The low-pass filter was set at
the Nyquist frequency to avoid the aliasing of the sampled data. The turbulent kinetic
energy lost during the low-pass filtering process is estimated to be less than 0.2% of
the total energy. We do not expect much energy in the turbulence below 10 Hz since
the length scale of the largest turbulence eddies should be no more than the width
of the test section (0.254 m), which roughly corresponds to the high-pass filtering
frequency. In some cases, two sets of data acquisition were performed with different
band-filter settings, and the two energy spectra were patched together, covering a
wide frequency range between 0.75 Hz and 7 kHz. The background noise of the wind
tunnel was compensated for by subtracting the energy spectrum of an empty wind
tunnel from the measured energy spectra.

We have modified the DISA 55P51 X-wires for velocity measurements by soldering
a 3.0 mm long, copper-plated tungsten wire between the prong tips, which was then
etched at its centre to make a 0.45 mm long sensitive section with 3 µm diameter.
The separation between the neighbouring wires was 0.90 mm. The over-heat ratio of
the hot wires was set to a constant value of 1.8 throughout the measurements. In
the axisymmetric contraction experiment, a DISA 55M01/05/10 CTA system and
Krohnhite 3342 filters were used instead. Hot-wire calibration was performed in a
small calibration tunnel that was designed and built especially for this purpose. The
tunnel was warmed up long before calibrations were done so that the air temperature
was constant throughout the measurements. Whenever the hot-wire characteristics
were found to have significantly changed after a run of experiments, all the acquired
data were discarded. Otherwise, an averaged value of the two sets of the calibration,
one obtained before the experiment and the other after, was used for the reduction of
experimental data. A standard static calibration method for hot wires was employed
(Bradshaw 1975; Perry 1982), where the functional relationship between the flow
velocity and the output DC voltage from the CTA system was fitted to King’s
law. The effective cooling velocity was determined using an expression given by
Champagne, Sleicher & Wehrmann (1967), where the yaw factor was obtained for
each wire as a function of the yaw angle at the same Reynolds number as the
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q2/Ū2 = A(x/M + B)−n

 A
B
n

1.33× 10−1 1.92× 10−2 5.26× 10−4 5.72× 10−2 4.70× 10−4

39.9 66.6 70.2 74.6 45.6
1.06 0.756 0.634 1.22 0.401

Ū(m s−1) 21.0 11.5 17.5 17.7 20.2
M(m) 0.0140 0.0140 0.00847 0.0250 0.0250
Rl 206 342 10.6 105 116
ρ∗ 1.20 0.882 0.634 2.14 1.12
II −0.76× 10−2 −1.97× 10−2 −2.67× 10−2 −1.79× 10−2 −4.28× 10−2

III 0.17× 10−3 1.00× 10−3 −1.69× 10−3 −0.92× 10−3 −3.39× 10−3

Table 1. Characteristic turbulence parameters in the present experiment.
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Figure 2. Development of the principal values of the anisotropy tensor after (a) plane distortion,
(b) axisymmetric expansion, and (c) axisymmetric contraction: •, b1; N, b2; H, b3.

individual experiment. The effect of the pitch angle on the effective cooling velocity
was very small (Jorgensen 1971), usually negligible.

In the present experiment, the Kolmogorov microscale κ of turbulence was of the
order of the sensitive wire length δ of the hot-wire probe. This might have caused an
error by underestimating the turbulent kinetic energy near the Kolmogorov frequency
fκ = Ū/2πκ. Wyngaard (1968) showed for a hot wire whose wire separation is equal
to the sensitive wire length that the longitudinal and the lateral one-dimensional
energy spectra are underestimated by 5% and 10%, respectively, at the frequency
fl = Ū/2πl. Although these errors seem to be large, the contribution to the total
turbulent kinetic energy is very small since the energy spectra tail off sharply at higher
frequencies. In fact, only 1% of the total turbulent kinetic energy is contained above
the frequency fδ = Ū/2πδ in the present experiment.

4. Results and discussion
4.1. Development of characteristic properties

The development of the principal values of the anisotropy tensor is given in fig-
ures 2(a), 2(b) and 2(c) for the plane distortion, axisymmetric expansion and axisym-
metric contraction experiments, respectively. The trace of the anisotropy tensor is zero
so that these values represent the degree of anisotropy in each principal direction. The
figures demonstrate that the rate of return to isotropy is quite different among the
experiments. The anisotropic turbulence after the axisymmetric contraction (figure 2c)
seems to have the fastest rate of return to isotropy, while the turbulence after the
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Figure 4. The turbulence triangle and possible states of turbulence in invariant coordinates, η vs. ξ.

plane distortion (figure 2a) has a faster rate of return than that after the axisymmetric
expansion (figure 2b). It is also shown that the rate of return to isotropy is different
for different principal directions in each case. For example, the intermediate princi-
pal value in the plane distortion experimental (figure 2a) barely returns to isotropy,
while the other two principal values show significant rates of return. This provides
experimental evidence that the return to isotropy is not a linear process. Figure 3
shows a plot of these results along with the other experimental results in the invariant
coordinates (−II vs. III ), demonstrating that the anisotropic turbulence created in the
present experiment was very similar to what we had initially expected.
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In order to see the nonlinear behaviour in the return to isotropy more clearly and
to examine the trajectories of the return to isotropy of homogeneous turbulence, we
introduce new variables ξ and η (Choi 1983) defined by

ξ3 = III /2, η2 = −II /3. (18)

The turbulence triangle can also be transformed from the III –(−II ) coordinates
(figure 1) to the ξ–η coordinates in figure 4. As will be discussed later in § 4.3, any
nonlinearity in the return to isotropy of homogeneous turbulence can be seen from
the turbulence trajectories in the ξ–η coordinates. In other words, the trajectories of
anisotropic turbulence should be straight lines through the origin if Rotta’s model for
a linear return to isotropy were correct (Choi 1983). All the available experimental
data, in which all three components of turbulent kinetic energy were measured, are
plotted in figure 5. It can be seen in this figure that the turbulence trajectories
are not straight lines through the origin, indicating that the return to isotropy of
anisotropic turbulence is indeed a nonlinear process. Evidently, turbulence wants to
become axisymmetric (η = ±ξ corresponds to axisymmetry) even more than it wants
to become isotropic. This nonlinearity is most clearly seen from the data with III > 0
in the present experiment after the plane distortion, in Gence & Mathieu (1980) and
in Le Penven et al. (1985). It is, however, less clear from the data with III < 0 in
Tucker (1970) and Le Penven et al. (1985).

The decay process of turbulent kinetic energy can be expressed quite well by a
power law. The powers and other constants in the decay law of turbulent kinetic
energy are given in table 1. The table also shows the characteristic flow parameters
in the present experiment. It is shown that the Reynolds numbers based on the
turbulence length scale and the velocity scale of energy-containing eddies, as defined
in equation (9), are of the same order for all the experiments except for set 1 of
the axisymmetric contraction experiment, whose Reynolds number was much smaller
than the rest. In this set of experiment, a fine mesh grid with M = 8.47 mm was placed
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60 mesh lengths upstream of the second contraction section, so that the turbulence
velocity scale as well as the turbulence length scale were small compared with those in
other sets of the present experiment. This difference in the Reynolds number helped
determine the functional dependence of the Reynolds number on the rate of return to
isotropy of homogeneous anisotropic turbulence. We were also able to compare these
experimental results with the direct numerical simulation data, which were obtained
at Reynolds numbers that were more than an order of magnitude lower. The details
of these procedures, together with the discussion of the effect of the Reynolds number
on the rate of return, are given later in § 4.5.

Table 1 also shows that the degree of anisotropy of turbulence, measured either by
II or III , was quite different between sets 2 and 3 of the axisymmetric contraction
experiment. The degree of anisotropy in set 2 was smaller and is similar to that
of Mills & Corrsin (1957) and Uberoi (1957), while the turbulence in set 3 had
a greater anisotropy, similar to that of Uberoi (1956) and Warhaft (1980). This
difference in the degree of anisotropy came from the fact that the grids were placed
at different upstream positions from the second contraction section. In set 3 a coarse
grid with M = 25.0 mm was placed 60 mesh lengths upstream of the beginning of
second contraction section. Hence the grid-generated turbulence had enough time to
relax before it was strained in the second axisymmetric contraction section. In set 2,
however, the same coarse grid was placed 20 mesh lengths upstream of the second
contraction section. In other words, the initial cigar-shaped turbulence from the grid
reached the second axisymmetric contraction before it became nearly isotropic, which
takes approximately 50 mesh lengths (Warhaft 1980). As a consequence, the degree
of anisotropy of set 2 of the axisymmetric contraction experiment was much smaller
than that of set 3.

4.2. The rate of the return to isotropy

In figure 6 the characteristic time scale ratio ρ∗ is plotted for all the available data
against the function F defined in (16). The parameter ρ∗ is defined as the ratio of the
two time scales of turbulence – the time scale for the decay of the turbulent kinetic
energy q2/dq2/dt and the time scale for the return to isotropy II /dII /dt:

ρ∗ =
q2/dq2/dt

II /dII /dt
. (19)

The characteristic time scale ratio ρ∗ can be interpreted as a measure of the rate of
return to isotropy of anisotropic turbulence in a normalized time space, which takes
a greater value when the return to isotropy is faster. The Reynolds numbers for all
the data shown in figure 6 are of the same order except for set 1 of the present
axisymmetric contraction experiment and for the DNS data of Rogallo (1981), whose
Reynolds numbers are more than an order of magnitude smaller than the rest. Figure 6
demonstrates that the rate of return to isotropy of anisotropic turbulence after the
axisymmetric expansion (whose trajectory is on the right-hand side of the turbulence
triangle in figures 1 and 4) is the slowest, and it becomes faster as the corresponding
turbulence trajectory moves toward the left-hand side of the turbulence triangle. The
rate of return to isotropy of turbulence after the plane distortion is faster than that
of the axisymmetric expansion, and it is fastest after the axisymmetric contraction,
confirming the finding of Gence & Mathieu (1980). The rate of the return to isotropy
for set 1 of the present axisymmetric contraction experiment was as low as Rogallo’s
data.

In order to help visualize the difference in the rate of return to isotropy as a
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Figure 6. The characteristic time-scale ratio ρ∗ as a function of F: , present experiment (ax-
isymmetric contraction, set 1); N, Warhaft (1980); �, Mills & Corrsin (1959); I, Uberoi (1956);
J, Uberoi (1957); F, Rogallo (1981). The other symbols are as in figure 3. Experimental error is
indicated by error bars in terms of the 90% confidence level.
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Figure 7. Surface map for the characteristic time-scale ratio ρ∗ plotted against (η + ξ) and (η − ξ)
coordinates. The straight lines given by η = ξ and η = −ξ correspond to right- and left-hand
sides of the turbulence triangle in figures 4 and 5, representing cigar-shaped and pancake-shaped
turbulence, respectively.
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Experiment n B
√
Rl 2Ūτκ/M Location of data (x/M)

Plane distortion 1.06 39.9 14 3.58 20–128
Axisymmetric expansion 0.756 66.6 18 6.53 20–156
Axisymmetric contraction

Set 1 0.634 70.2 3.3 44.7 59–117
Set 2 1.22 74.6 10 8.15 30–64
Set 3 0.401 45.6 11 13.8 20–57

Table 2. Non-dimensional distance for dissipation to return to isotropy.

function of the type and degree of anisotropy of turbulence, a surface map for ρ∗
is plotted against (η + ξ) and (η − ξ) in figure 7 using all the available data. The
straight lines given by η = ξ and η = −ξ in this figure correspond to the right- and
left-hand sides of the turbulence triangle (figures 4 and 5), representing cigar-shaped
and pancake-shaped turbulence, respectively.

Random experimental error in terms of the 90% confidence level is indicated by
error bars in figure 6, where we note that some of the experimental data have large
scatter. It was initially suspected that the scatter in the characteristic time-scale ratio
ρ∗ among the experimental data was partly due to the anisotropy of dissipation.
In order to evaluate the effect of anisotropy of dissipation on the rate of return
to isotropy of turbulent kinetic energy, we estimated the non-dimensional distance
required for dissipation to return to isotropy by

2Ūτk/M =
4

3n

( x
M

+ B
) 1√

Rl
. (20)

Here, we assumed that the time scale for dissipation to return to isotropy is about
twice the dissipation time scale, which is given by

τk = (ν/ε̄)1/2 =
1

3

q2

ε̄

1√
Rl
, (21)

where the rate equation for turbulent kinetic energy is given (Tennekes & Lumley
1972) by

dq2/dt = −2ε̄, (22)

and the power-decay law of turbulent kinetic energy by

q2

Ū2
= A

( x
M

+ B
)−n

. (23)

The values for 2Ūτk/M in equation (20) are calculated for each experiment at the
end of the distortion section and are shown in table 2. Also shown in the table is the
location in the test section where the measurements were taken in each experiment.
It is clear from the table that all the measurements in the present experiment were
taken after the dissipation had returned to isotropy. In other words, the time scale
for dissipation to return to isotropy is much smaller than that for turbulent kinetic
energy. This is in good agreement with a recent result of direct numerical simulation
by Ikai & Kawamura (1995). Therefore, the effect of initial anisotropy of dissipation
on the rate of return to isotropy of turbulent kinetic energy is negligible in the present
set of experimental data.
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Kassinos & Reynolds (1997) pointed out that the anisotropy of cigar-shaped
turbulence developed under a relatively slow expansion such as in the present study
is greater than the limiting value predicted by the rapid distortion theory. This was
also observed by Lee (1986) in his DNS study of homogeneous turbulence as well as
in an experiment on an impinging jet near the stagnation region (Nishino et al. 1996).
The rapid distortion theory, of course, neglects viscosity and nonlinear scrambling
(Batchelor & Proudman 1954), so it might be expected to predict greater, not less,
anisotropy after the expansion. This curious finding deserves explanation.

Our expectation of rapid distortion theory is apparently simplistic, since the result
of both experiment and numerical simulation, even at the very low Reynolds number
of the computation, indicate greater anisotropy than predicted by the distortion
theory. This suggests, first, that the rapid distortion theory is a poor yardstick with
which to gauge turbulence. It also suggests that the nonlinear scrambling neglected
in the rapid distortion theory is much more complicated than a simple relaxation. It
seems unlikely, however, that the neglect of viscous dissipation is the culprit.

The present experiment shows that the return to isotropy is very slow for cigar-
shaped turbulence under the axisymmetric expansion. On the other hand, the DNS
study conducted by Lee (1986) demonstrated the surprising result that upon removal
of the strain the anisotropy of the Reynolds stress continued to increase. This
overshoot in the anisotropy was found, however, only in a case where the strain rate
was very large, by more than an order of magnitude, compared to the experiment.
All the other cases studied by Lee (1986) and the DNS results by Yamamoto
(1985) indicate that cigar-shaped turbulence returned towards isotropy monotonically
without an overshoot.

It is certainly difficult to imagine that this discrepancy can be explained by the
lack of precise homogeneity or axisymmetry in the present experiment. The measured
turbulence homogeneity of the present study is as good as other experiments of this
type (Le Penven et al. 1985). Indeed, the variation in the mean velocity in the test
section after the axisymmetric expansion duct was less than ±1% within ±4 mesh
lengths, while the turbulence intensity was uniform within ±4%. The axisymmetry
of cigar-shaped turbulence was also good as indicated by the value of ξ/η = 0.95,
where ξ = ±η corresponds to the axisymmetric state of turbulence. The DNS data
are probably also not precisely axisymmetric or homogeneous, since it is a single
realization.

We believe that the remarkably low Reynolds number of the DNS study combined
with the large strain rate applied to the turbulence may be the explanation for the
difference. The behaviour of the experimental data is consistent with that of the
DNS, in the sense that cigar-shaped, axisymmetric turbulence at a higher Reynolds
number shows a very slow return towards isotropy, while the DNS result under a
rapid expansion shows a negative return. This is the sort of difference that could
be induced by a considerable difference in the Reynolds number and the strain rate.
One would have to image the rate of return of cigar-shaped turbulence increasing
as the Reynolds number increased and the strain rate decreased, beginning from
negative values. Evidently, at least under some circumstances, ‘return to isotropy’ is
a misnomer. To model this complex behaviour, a thoroughly nonlinear dependence
on the anisotropy tensor bij would work, including the third invariant. Lacking that,
possibly a dependence on the time derivative of the anisotropy tensor might work.

In a recent report, Kassinos & Reynolds (1997) have suggested another explanation
for the discrepancy by introducing a new type of turbulence model. Their model
parameterizes the turbulence not only by the anisotropy tensor but also by two other
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similar tensor that describe the physical structure, rather than the velocity structure –
essentially the anisotropy of streamline spacing. Each of these tensors has its own
relaxation rate, and the differential relaxation results in the fast growth of anisotropy,
leading to an overshoot under a rapid expansion, which has been observed in the
DNS study (Lee 1986). This is a plausible explanation for the discrepancy discussed
above, and indeed their model correctly predicts this behaviour. However, this is a
complex, highly speculative and relatively untested model. It needs to be verified with
many more flows, and be evaluated by the research community, before it can be fully
trusted. However, this model is certainly an interesting one, and does directly address
the sort of mechanism that must be at play in the return to isotropy of homogeneous
turbulence.

4.3. Trajectories of the return to isotropy

Using the results of the present experiments along with others (Tucker 1970; Gence &
Mathieu 1980; Le Penven et al. 1985), we are able to show that the return to isotropy
of homogeneous turbulence does not follow Rotta’s linear model (Rotta 1951). In
other words, the turbulence trajectories in figure 5 are not straight lines through the
origin, indicating that the return to isotropy is a nonlinear process. This can be shown
as follows.

The behaviour of turbulence trajectories shown in figure 5 can be expressed by

0 6
|ξ|
η
6 1, (24)

0 6
d ln |ξ|
d ln η

6 1. (25)

and
d ln |ξ|
d ln η

→ 0 as
|ξ|
η
→ 0 (26)

where, ξ and η are defined in (18) as

ξ3 = III /2, η2 = −II /3.

We now use the rate equations for the second and the third invariants, which are
respectively given by

dII

dτ
= −2(β − 2)II + 3γIII , (27)

dIII

dτ
= −3(β − 2)III − 2

3
γII 2. (28)

These equations are obtained by substituting (14) into (8), after using the definitions
for the invariants, (12). Equations (27) and (28) are combined to give

d ln |ξ|
d ln η

=
d ln |III 1/3|
d ln(−II )1/2

=
2II dIII /dτ

3III dII /dτ
=

1 + GX−4

1 + GX2
. (29)

Here, functions G and X are defined by

G =
γ

(β − 2)
ξ (30)

and

X =
ξ

η
. (31)
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The function G is essentially a measure of the relative magnitude of the nonlinear
and linear return to isotropy of homogeneous turbulence. In other words, G = 0 in
Rotta’s model. In this case, equation (29) reduces to

d ln |ξ|
d ln η

= 1.

This is an equation for a family of straight lines through the origin. In other words,
the turbulence should follow straight lines through the origin if Rotta’s model for the
linear return to isotropy were correct (Choi 1983).

Substituting (29) into (25) and (26) and using (24), we find the following functional
behaviour for G:

−X4 6 G 6 0 (32)

and

G→ −X4 as X → 0. (33)

The following simple function for G satisfies both equations (32) and (33):

G = −X4 + hX6, 0 6 h 6 1, (34)

where h = 0.8 gives the best fit to the experimental data. The trajectories of the return
to isotropy predicted by this model are shown with dashed lines in figure 5.

The return to isotropy tensor in (14) can be written as

φij = (β − 2)

[
bij +

γ

(β − 2)
(bik bkj + 2

3
II δij)

]
+ 2bij , (35)

where the ratio of the two unknown invariant functions γ and (β − 2) is modelled
using (30) and (34) as

γ

(β − 2)
=
G

ξ
=
−X4 + 0.8X6

ξ
. (36)

Equation (35) for the return-to-isotropy tensor φij now contains only one unknown
invariant function β. We can write the characteristic time scale ratio ρ∗ in terms of
the non-dimensional time τ defined in (6) as

ρ∗ = −1

2

dII

dτ
/II . (37)

Substituting (27) into (37) we obtain

ρ∗ = (β − 2)

[
1− 3

2

G

ξ

III

II

]
= (β − 2)(1 + GX2). (38)

Equation (38) relates the only unknown invariant function β to an experimentally
obtainable quantity ρ∗, which is shown in figure 6 for all the available experimental
data. Substituting (38) into (35), we obtain

φij =
ρ∗

(1 + GX2)

[
bij +

G

ξ
(bik bkj + 2

3
II δij)

]
+ 2bij , (39)

where G is given by (34) as

G = −X4 + 0.8X6.

By substituting (39) into (8), the rate equation for the anisotropy tensor bij can be
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Figure 8. Function G vs. X to show a nonlinear return to isotropy of homogeneous turbulence.

expressed by

dbij
dτ

= − ρ∗

(1 + GX2)

[
bij +

G

ξ
(bik bkj + 2

3
II δij)

]
. (40)

It has already been mentioned that the function G is a measure of the relative
magnitude of the nonlinear and linear return to isotropy of homogeneous turbulence.
This can be easily demonstrated by expanding (39) in G as

φij = (ρ∗ + 2)bij − ρ∗G
[
X2bij − bik bki + 2

3
II δij

ξ

]
+ O(G2). (41)

The function G is plotted versus X in figure 8, indicating that the nonlinear effect is
significant for |X| > 0.5.

The symmetry condition for the trajectories of the return to isotropy of homo-
geneous turbulence can be stated thus: the turbulence must stay axisymmetric once
it becomes axisymmetric. In other words, the turbulence cannot distinguish the two
principal values of the Reynolds stress tensor once they become identical. Stating
this in the invariant coordinates, the decaying turbulence must return to isotropy
along the right- or left-hand side of the turbulence triangle toward the origin once it
touches either of these sides. This can easily be shown by taking a time derivative of
the following function:

f(II , III ) =

(
−II

3

)1/2

−
∣∣∣∣III2

∣∣∣∣1/3 . (42)

This function f(II , III ) becomes zero if and only if turbulence is axisymmetric. Using
(27) and (28), we can easily obtain that

d

dτ
f(II , III ) = 0 as f(II , III )→ 0. (43)

Our experimental results demonstrated (figures 3 and 5) that the axisymmetric turbu-
lence, whether it is cigar-shaped or pancake-shaped, stayed axisymmetric as it returned
toward isotropy. In other words, it returned towards the origin (three-dimensional
isotropic state of turbulence) along the right- or left-hand side of the turbulent trian-
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gle. Makita & Minami (1995) also confirmed the above symmetry condition for the
trajectories of cigar-shaped axisymmetric turbulence.

We now examine the behaviour of trajectories for the return to isotropy of homo-
geneous turbulence which is initially on III = 0 (ξ = 0). From (28), we have

dIII

dτ
= − 2

3
γII 2 (44)

for the turbulence whose third invariant III is initially zero (ξ = 0). The term on
the right-hand side of this equation does not vanish unless the second invariant
II becomes zero (three-dimensional isotropic turbulence) or γ vanishes. We do not
know a priori whether γ vanishes or not as the third invariant becomes zero. Hence
the turbulence, which is initially on III = 0 (ξ = 0), does not necessarily return to
isotropy along III = 0 (ξ = 0). The present turbulence model is an even function
in ξ, hence it is an even function in III . Therefore, this model predicts the decaying
homogeneous turbulence to return to isotropy along III = 0 once III becomes zero.
This is in contrast to the quadratic model for the return to isotropy of homogeneous
turbulence (Sarkar & Speziale 1990), where the invariant functions γ and (β-2) are
set to constant values. This makes G in (30) an odd function in ξ. Therefore, the
trajectories of decaying turbulence predicted by the quadratic model are not symmetric
with respect to the ordinate (III = 0).

4.4. Realizability conditions for turbulence models

The concept of realizability in second-order modelling is introduced by Schumann
(1977). He proposed three realizability conditions for the Reynolds stress tensor
Rij = uiuj:

Rαβ > 0 for α = β, (45)

R2
αβ 6 RααRββ for α 6= β, (46)

det (Rαα) > 0. (47)

Equation (45) requires non-negative, component turbulent kinetic energies, while (46)
is the consequence of Schwartz’ inequality. Equation (47) requires that the Reynolds
stress tensor must be real. The turbulence model must satisfy these conditions in
order to guarantee a realizable solution from numerical simulations. This concept
is especially important in computations when the initial conditions are so poor that
there are chances for component energies to become negative. It is also important
when we deal with turbulent flows in which one of the component turbulent kinetic
energies is suppressed to become nearly two-dimensional (Lumley 1978). The best way
to implement these conditions in our model is to work with the function F defined
in (16). It is easy to show that F is 27 times the product of the three eigenvalues of
the Reynolds stress tensor normalized by the turbulent kinetic energy; therefore it
vanishes if and only if one of the component energies vanishes. In order to guarantee
that none of the eigenvalues of the Reynolds stress tensor become negative, we require
that

dF

dτ
→ 0 as F → 0. (48)

Using (27) and (28), the time derivative of F can be given by

dF

dτ
= −9

ρ∗

(1 + GX2)

[(
9III + 2

G

ξ
II 2

)
+ 2(1 + GX2)II

]
. (49)
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Therefore, if we choose ρ∗ such that

ρ∗ → 0 as F → 0 (50)

we can guarantee that the realizability conditions are satisfied.

4.5. Effect of the Reynolds number

In order to complete the present turbulence model, we must model the rate of
return to isotropy as a function of the Reynolds number and the type and degree of
anisotropy of turbulence, while satisfying the realizability conditions. Here we propose
the following expression for ρ∗:

ρ∗ = C3 exp

(
− C1√

Rl
− C4

R1

)[{
1− exp

(
− (1− F)

0.35

)}
g(X) +

C2√
Rl

]
×
[

2

1− 3Ψs

− 1− (1 + 0.717F2.66R0.25
l )−2

]
. (51)

This expression is rather complicated; however all the terms in the equation are
necessary to ensure that it will display the correct asymptotic behaviour for homo-
geneous turbulence as well as to agree with the experimental data. The basic form
of equation (51) has been derived from the realizability argument in modelling the
density anomaly flux (Lumley & Mansfield 1984), which is given by

ρ∗ = 2

{
1− exp

(
− (1− F)

0.35

)}[
2

1− 3Ψs

− 1− (1 + 0.75F3
√
Rl)
−1

]
(52)

where

Ψs = Ψ + 2Ψ 2 + 7Ψ 3 + 30Ψ 4 + 143Ψ 5, Ψ =
4F

27
. (53)

Although this expression fits many of the experimental data, it does not have the
correct asymptotic behaviour. It also lacks a proper functional dependence on the
Reynolds number and on the type of anisotropy of the turbulence. In order to
improve the model (52), we first require the following asymptotic behaviour of the
homogeneous turbulence:

ρ∗ → 0 as
√
Rl → 0, (54)

which means that there will be no return to isotropy in the final period of decay
(Lumley 1978; Lumley & Newman 1977). The return to isotropy is basically due to the
nonlinear interaction between fluctuating velocities and pressure so that homogeneous
anisotropic turbulence does not return to isotropy at vanishing Reynolds number
where turbulence ceases to exist. The next requirement is that the model must agree
with a series of experimental results by Comte-Bellot & Corrsin (1966) for cigar-
shaped turbulence with vanishing anisotropy, which gives

ρ∗ → 0 with
√
Rl →∞ (55)

and in particular

ρ∗ = 0.609 with
√
Rl = 12. (56)

The first exponential term exp (−C1/
√
Rl) and the last term in the first square bracket

C2/
√
Rl in equation (51) fulfil these requirements. We must also require that the

turbulence model should predict not only the turbulence with low to moderate
Reynolds number observed in the laboratories, but also atmospheric turbulence with
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Figure 9. Function g vs. X to indicate the relative magnitude of the rate of return to isotropy of
anisotropic turbulence to pancake-shaped turbulence. Symbols are as in figure 3.

√
Rl = O(103). In order for the turbulence model to cover such a wide range of

Reynolds numbers, it is necessary to add one more exponential term exp (−C4/Rl)
to the expression for ρ∗. The numerical constants C1, C2, C3 and C4 in equation (51)
are then determined to account for all the available experimental results after the
axisymmetric contraction while satisfying the asymptotic behaviour of homogeneous
turbulence as described above. The constants are given by C1 = 3.28, C2 = 0.680,
C3 = 2.49 and C4 = 8.69.

Our experimental results at similar Reynolds numbers of
√
Rl = O(10) indicated

that the rate of return to isotropy is very different depending on the type of anisotropy
of turbulence (figures 6 and 7). This can be demonstrated by plotting the function
g(X) versus X in figure 9, where g = 1 for pancake-shaped turbulence (X = −1). Here,
the functional value of g(X) indicates the relative magnitude of the rate of return
to isotropy of homogeneous turbulence to pancake-shaped turbulence. Since no
experimental data are available between X = −0.8 and 0.6, a straight line fit will give

g(X) = 1− 0.269(X + 1). (57)

Substituting (57) and all the numerical constants into (51) we finally obtain

ρ∗ = 2.49 exp

(
−3.28√

Rl
− 8.69

Rl

)[{
1− exp

(
− (1− F)

0.35

)}
{(1− 0.269(X + 1)}+

0.680√
Rl

]
×
[

2

1− 3Ψs

− 1− (1 + 0.717F2.66R0.25
l )−2

]
. (58)

Figure 10 shows the plot of the rate of return to isotropy ρ∗ vs. F for all the exper-
imental and numerical data for pancake-shaped axisymmetric turbulence (X = −1).
The Reynolds number of all the data shown in the figure is

√
Rl = O(10) except for

the DNS data (Rogallo 1981) and for our data set 1 of the axisymmetric contraction
experiment for which

√
Rl = O(1). The predictions by the present turbulence model

given by equation (58) are also shown in the same figure for a range of Reynolds
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Figure 10. Predictions of the rate of return to isotropy of pancake-shaped turbulence (X = −1)
by the present turbulence model for a range of the Reynolds numbers. Symbols are as in figures 3
and 6.
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Figure 11. Predictions of the rate of return to isotropy of different types of anisotropic turbulence
with

√
Rl = 12 by the present turbulence model. Symbols are as in figures 3 and 6.



82 K.-S. Choi and J. L. Lumley

numbers. The model predicts ρ∗ = 3.4 at F = 0.75 when
√
Rl = 103, which is the right

value for atmospheric turbulence. The agreement of the present model with Rogallo’s
DNS results is also good. The predictions of the rate of return to isotropy ρ∗ for
homogeneous turbulence with

√
Rl = 12 are plotted against F in figure 11 with X

as the parameter. Remembering that X = −1 and +1 correspond to pancake-shaped
and cigar-shaped turbulence, respectively the present turbulence model correctly pre-
dicts a faster return to isotropy for pancake-shaped turbulence and a slower return
for cigar-shaped turbulence.
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